Skip to content

Gregory Taft

Research Areas/Interest

Femtosecond lasers and their use in understanding ultrafast processes in materials, femtosecond pump-probe spectroscopy, nonlinear optics.

Select Publications:

B. Crossman, G. Taft, “  Transient transmission oscillations in doped and undoped lithium niobate induced by near-infrared femtosecond pulses,”  J. Mater. Res. doi:10.1557/jmr.2018.414 (2018).

C. G. Durfee, T. Storz, J. Garlick, S. Hill, J. A. Squier, M. Kirchner, G. Taft, K. Shea, H. Kapteyn, M. Murnane, S. Backus, ”  Direct diode-pumped Kerr-lens mode-locked Ti:sapphire laser,”  Opt. Express20,13677 (2012).

G. J. Taft, M. T. Newby, J. J. Hrebik, M. Onellion, T. F. George, D. Szentesi, S. Szatmari, and L. Nanai, ” Ultrafast dynamic reflectivity of vanadium pentoxide,”  J. Mater. Res.23, 2 (2008).

M. L. Schneider, M. Onellion, X. X. Xi, Xianghui Zeng, Arsen Soukiassian, P. Omernik, and G. Taft, “Electron dynamics in metallic and spin-glass cuprates,”  Phys. Rev. B70, 012504 (2004).

G. Taft, A. Rundquist, M. M. Murnane, H. C. Kapteyn, K. DeLong, R. Trebino, I. Christov, ”  Ultrafast optical waveform measurements using Frequency Resolved Optical Gating,”  Opt. Lett.20, 743 (1995).

Dynamic Reflectivity Measurement

An ultrashort laser “pump” pulse with a duration less than 100 fs (1 x 10  -13 s) energizes charged particles at the surface of a sample, temporarily changing the surface reflectivity.  A lower energy probe pulse reflects from the energized surface after a controllable time delay. The change in the reflected probe light is measured versus the time delay. This helps understand charge dynamics in the sample on ultrashort timescales.

dynamic reflectivity image

  • Education

    Ph.D., Washington State University (1997)
    M.S., Washington State University (1994)
    B.A., Saint John’s University (1992)