Sequestering CO\textsubscript{2} through Enhanced Oil Recovery: An Insufficient Technique to Mitigate Climate Change

Jason Hoffmann (Dr. Ernie Diedrich and Dr. Gordon Brown)
Environmental Studies Department, CSB|SJU, Collegeville, MN

Introduction
Sequestering Carbon Dioxide (CO\textsubscript{2}) through enhanced oil recovery (EOR) is a well established technology being used to mitigate climate change. This thesis examined the underlying reasons why CO\textsubscript{2} EOR should be abated as a sufficient method to mitigate climate change in terms of economics, the environment, and liabilities. The discussion highlights the fact that CO\textsubscript{2} EOR does not change the fossil fuel lifestyle Americans have become reliant upon. At best, CO\textsubscript{2} EOR is a bridge technology to find more productive ways of reducing CO\textsubscript{2} emissions.

Climate Change and CO\textsubscript{2} Enhanced Oil Recovery
Carbon Dioxide is one of the most significant greenhouse gases contributing to what some consider worldwide climate change. Reducing atmospheric CO\textsubscript{2} emissions is the goal of many international governments, agencies, and scientists. Carbon sequestration – the long term storage of CO\textsubscript{2} - is a technique being developed to accomplish this goal and mitigate climate change from CO\textsubscript{2}.

The most well established form of CO\textsubscript{2} sequestration is into oil reservoirs, specifically through enhanced oil recovery (EOR). Carbon Dioxide is pumped into a near-depleted oil reservoir which mixes with highly viscous oil allowing for the extra recovery of 30-60% oil that would normally be non-recoverable. A moderate amount of the CO\textsubscript{2} used for oil extraction remains sequestered in the oil reservoir rather than the atmosphere.

Enhanced Oil Recovery is a value-added system that allows CO\textsubscript{2} to be sequestered at a low cost due to the revenue of recovered oil. It is no surprise that EOR has become a heavily researched and booming technology. Enhanced oil recovery is viewed as the optimal form of CO\textsubscript{2} sequestration by the oil industry not only because of its cost-effectiveness and elimination of atmospheric CO\textsubscript{2}, but also because of its relative ease to employ and successful track record.

Conclusion
The most significant problem with CO\textsubscript{2} EOR is that it does not change the fossil fuel lifestyle Americans have become reliant upon. Furthermore, we do not understand the long-term environmental effects. Thus, despite its aspects of economic and environmental viability, CO\textsubscript{2} EOR can be considered merely a short-term bridge technology to other alternative forms of renewable energy. Relying upon CO\textsubscript{2} EOR as a sufficient technique to mitigate climate change will prove insufficient.

Economics of CO\textsubscript{2} EOR
Pros
+ Economically viable for oil companies when oil $50 pb or higher
+ 15%-60% more oil extracted for sale
+ Carbon credit system implementation

Cons
- Carbon capture costs too high at $150/ ton CO\textsubscript{2}
- Oil demand will not match supply in the long-run

Environmental Impacts of CO\textsubscript{2} EOR
Pros
+ Minimal problems in 35 year history
+ Sequestered CO\textsubscript{2} life expectancy of 1000 years

Cons
- More research needed for long-term effects
- Leakage into atmosphere?
- Seepage into groundwater?

Regulations and Liabilities of CO\textsubscript{2} EOR
Pros
+ Monitoring must distinguish ‘acceptable’ from ‘unacceptable’ behavior
+ Both economic and environmental benefits to monitoring
+ Extensive models needed for effective monitoring

Cons
- Policy system for regulations and liabilities non-existent
- Policy interpretation by judicial, legislative, and regulatory authorities?
- Time buying mechanism by politicians