Introduction:

- Anaerobic lactate threshold (LT2) is identified as the point at which blood lactate (BLa) begins to rise in a rapid, non-linear fashion with increasing exercise intensity.²
- LT2 is believed to be the result of an increasing reliance on anaerobic metabolism.⁴
- LT2 has important implications in predicting performance in endurance sports and in designing training programs for endurance athletes.⁹
- There is no ‘gold standard’ for estimated LT2; however, visual inspection is commonly used in clinical and practical settings.¹
- While visual inspection is commonly used method to estimate LT2, the method has been criticized for its lack of objectivity - leading to concerns about reliability.¹

Methods:

- Existing BLa data from a previous study were utilized.
 - Previous study was IRB approved.
 - 14 DIII female cross country athletes.
 - Treadmill graded exercise test to volitional exhaustion.
 - BLa concentration tested after every 2 minute stage.
 - BLa concentration vs. velocity graphs plotted in excel.
- Visual inspection method:
 - Two experts.
 - Each expert independently established trend lines for the plotted BLa data.
 - Photocopies of trend lines, prior to the experts’ identification of LT2, were made (used with Dmax method).
 - LT2 was visually identified as the point on the BLa curve at which BLa concentrations began to rise in a rapid non-linear fashion (Figure 1).
- Dmax method:
 - Expert produced trend lines were used.
 - Dmax method is defined by the point on the BLa curve where a perpendicular line between the curve and a line between the endpoints of the curve is greatest (Figure 2).²

Results:

- Inter-rater reliability of the visual inspection method of identifying LT2:
 - Intraclass Correlation = .730
 - 95% CI = -174 – .927
 - Judged to be fair.
 - The validity coefficients for identifying LT2 by visual inspection compared to the Dmax method:
 - Rater 1 (r = .851; P < .001) judged to be excellent.
 - Rater 2 (r = .742; P = .002) judged to very good.

Discussion:

- Visual inspection may be a valid method of identifying of LT2.
- Some evidence that validity may be rater dependent.
- Results are consistent with previous research that found LT2 values identified by the Dmax method to be comparable to the values obtained through visual inspection.⁷,⁸
- The fair inter-rater reliability and large CI indicate that caution should be used when comparing LT2 values derived through visual inspection by multiple raters.
- Given the subjective nature of the visual inspection method, a fair inter-rater reliability rating is not surprising.
- The small sample size may have contributed to the large CI.

Conclusion:

- The current study provides evidence that visual inspection is a valid method of identifying LT2. However, further research is needed to establish validity relative to other objective methods of identifying LT2 and in evaluating diverse subject populations.
- Given the fair inter-rater reliability and large CI associated with the current study, scientists and practitioners should establish inter-rater reliability within clinics or research groups before comparing LT2 across raters.
- Future research should examine test-retest reliability of the visual inspection method to further establish the reliability of this method of identifying LT2.

Future Research:

- Establish inter-rater reliability of the visual inspection method of estimated LT2 by duplicating this study with different homogeneous populations and with larger heterogeneous populations.
- Establish test-retest reliability of the visual inspection method of estimating LT2, which was not addressed in the current study.
- Establish concurrent criterion-related validity of the visual inspection method of estimating LT2 by comparison to other established methods.

Cited Literature:

Acknowledgements:

- Special thanks to Dr. Mary Stenson and Emily Willaert, MS, for their assistance with this research study.